
 

 

Introduction 
 
Medical support personnel responding to multi-
ple traumas on the battlefield or in remote  loca-
tions may not have sufficient fluids for adequate 
resuscitation, and would therefore benefit from 
a small volume resuscitation product that could 
be given after hemorrhage control to sustain the 
wounded for extended time before evacuation 
to a medical support facility. Valproic Acid (VPA) 
and Pentoxifylline (PTX) have been suggested as 
potential small volume resuscitation products.  
 
Valproic Acid has been used extensively at 
doses of 600 – 1200 mg/day, p.o. (serum level 
of 50 – 100 µg/ml) as an anticonvulsant, and 
treatment for bipolar disorders, anxiety, psycho-
ses, alcoholism and dementia[1]. More recently, 
the histone deacetylase inhibitor (HDACI) activ-
ity of VPA has been demonstrated to provide 

hyperacetylation of histones for increased gene 
transcription, resulting in improved cellular pro-
tection (300 mg/kg) [2-4], hypoxia protection 
following lethal hemorrhage (166 mg/ml) [5], as 
well as increased hemorrhage survival in rats 
(300 mg/kg)[6] and swine (400 mg/kg)[7]. 
 
Pentoxifylline is a methylxanthine derivative, 
phosphodiesterase inhibitor, anti-inflammatory 
compound [8,9]. PTX is used clinically at maxi-
mum doses of 1200 mg/day, p.o. or i.v. for in-
termittent claudication and to improve cere-
brovascular blood flow. In anesthetized rats (50 
mg/kg) it  improved survival following hemor-
rhagic shock [10] and intestinal blood flow (49 
mg/kg) [11]. In anesthetized dogs PTX (15 mg/
kg) has shown both improvements in cardiac 
performance and oxygen utilization [12] and 
systemic and regional perfusion [13], or no im-
provement in cardiovascular parameters [14]. 
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Also, using unanesthetized rats, at a PTX dose 
of 50 mg/kg, several studies have shown im-
provement in cellular function [15], cardiac out-
put and function and tissue perfusion [16,17]. 
The mechanisms of PTX  hemorrhage resuscita-
tion benefits have been investigated in anesthe-
tized rats (25 mg/kg) in hypertonic saline (HS) 
[18-21] or LR [22,23]. However, in an anesthe-
tized swine study, PTX (40 mg/kg) given with 
3.5% Haemaccel 1 hr after hemorrhage and 
sepsis, failed to attenuate organ dysfunction or 
improve survival [24]. 
 
VPA (400 and 300 mg/kg) and PTX (50 mg/kg) 
were evaluated in this investigation as small 
volume (1.33 or 2.0 ml/kg) resuscitation prod-
ucts given immediately after hemorrhage with-
out additional fluids, using a sedated, sexually 
mature male miniature swine severe hemor-
rhage model. The model was previously devel-
oped specifically for evaluating low volume re-
suscitation products, as part of the Defense 
Advanced Research Projects Agency (DARPA) 
Surviving Blood Loss program [25].  
 
Methods and materials 
 
This investigation and the previous model devel-
opment control protocol25 were approved by the 
Institutional Animal Care and Use Committee of 
the U.S. Army Institute of Surgical Research, 
Fort Sam Houston, TX. The experiments were 
conducted in compliance with the Animal Wel-
fare Act and Animal Welfare Regulations. All 
animals received care in strict compliance with 
the 1996 Guide for the Care and Use of Labora-
tory Animals by the National Research Council 
and were maintained in an Association for As-
sessment and Accreditation of Laboratory Ani-
mal Care International accredited facility. 
 
Fifteen healthy, sexually mature, intact male 
Sinclair miniature swine weighing 41 ± 2.9 kg 
(mean ± SEM) were obtained from Sinclair Re-
search Center, Inc., Columbia, MO. Health of the 
animals was determined with a physical exam 
by a veterinarian, a lung CT scan and a blood 
sample for CBC/blood chemistry. The animals 
were socialized to human activity, transport 
cages, laboratory procedures and trained for 2 
weeks to lie quietly in a sling.  
 
Experimental preparation 
 
The experimental preparation has been de-
scribed in detail previously [25]. Briefly: follow-

ing 0.05 mg/kg of Buprenorphine, 4-5 mg/kg of 
Telazol, and isoflurane anesthesia the animals 
were catheterized in a small branch of the right 
carotid artery with a Data Sciences International 
(DSI, St. Paul, MN) telemetry transducer for ar-
terial blood pressure; the right external jugular 
vein for the continuous infusion of midazolam; 
the right femoral artery for hemorrhage and 
blood samples and the right femoral vein for 
blood samples and infusion of  the drugs. The 
catheters were tunneled subcutaneously to the 
dorsum over the shoulders and exteriorized. The 
incisions were closed with staples and infil-
trated with bupivacaine. Isoflurane was discon-
tinued and the animals were placed in a sling 
with feet on the floor and allowed to recover 
from anesthesia. Limb ECG electrodes were 
attached and BIS electrodes (Bispectral Index; 
Aspect Medical Systems, Newton, MA) were 
placed across the forehead. Midazolam infusion 
was started at 1.25 mg/kg/hr and adjusted 
throughout the study to maintain a BIS sedation 
level of 80-90 [26]. The animals were warmed 
with a heating pad and blankets to maintain a 
physiologic core temperature. After 30 min of 
stabilization, baseline hemodynamic data 
(systolic, diastolic and mean blood pressure and 
heart rate) were collected and baseline arterial 
and venous blood samples were taken for the 
following parameters: pO2, sO2, pCO2, HCO3, 
base excess (BE), pH, Hct, Hb, glucose, lactate, 
differential WBC and platelets, using standard 
blood gas and CBC clinical chemistry tech-
niques. The combined volume of arterial and 
venous blood taken for analysis was 26 ml per 
sample. The animals were then hemorrhaged 
60% of their estimated blood volume (65 ml/kg) 
exponentially over 1 hr using a computer con-
trolled withdrawal system [25,27]. 
 
Drug administration 
 
Immediately following end of hemorrhage (EOH), 
arterial and venous blood samples were col-
lected and small volume resuscitation was 
started 2-3 min after EOH with one of four treat-
ments: 1) 400 mg/kg VPA (Calbiochem, San 
Diego, CA, catalog # 676380, lot # 
D00075250) dissolved in deionized water, di-
luted to 1.33 ml/kg with saline and given over 2 
min (4 swine); 2) 300 mg/kg VPA (lot # 
D00060942) dissolved in deionized water, di-
luted to 2.0 ml/kg with saline and given over 30 
min (3 swine); 3) 50 mg/kg PTX (Calbiochem, 
San Diego, CA, catalog # 516354, lot # 
D00092360) dissolved in normal saline, diluted 
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to 2.0 ml/kg with saline and given over 2 min (4 
swine); 4) Normal saline vehicle at 2.0 ml/kg 
given over 2 min (4 swine). 
 
Doses of VPA and PTX were chosen from prior 
literature regarding the use of these compounds 
for resuscitation after hemorrhage. 
 
Osmolarity and pH of the VPA and PTX solutions 
were: VPA; pH = 8.438; mOsm/L  = > 1153. 
PTX; pH = 4.804; mOsm/L = 393.  
 
The animals were observed and sampled after 
hemorrhage at 15, 30, 60, 90, 120, 150, 180, 
240, 300 and 360 min or until the animal ex-
pired. Hemodynamic data were sampled con-
tinuously. Death was defined as respiratory ar-
rest. Any animal that survived beyond 6 hrs was 
euthanized with 10 ml of Fatal Plus (Vortech 
Pharmaceuticals, Dearborn, MI), i.v.   
 
VPA and PTX measurement: 
 
VPA in plasma was measured after extraction, 
conjugation to the fluorescent probe, 7-
diethylaminocoumarin-3-caroxylic acid hy-
drazide (DCCH, Invitrogen Corp, Carlsbad, CA), 
separation by reversed phase HPLC and meas-
ured by fluorometry. Samples were run in tripli-
cate and values calculated against a standard 
curve generated from untreated pig plasma 
spiked with known amounts of VPA. 2-phenyl 
butyric acid was used as an internal standard. 
 
PTX levels in plasma were determined by UV 
spectroscopy following extraction and HPLC 
separation of PTX from its metabolites as de-
scribed by Sripalakit [28]. A standard curve was 
generated by adding known amounts of PTX to 
untreated pig plasma. Chloramphenicol was 
used as internal standard. 
 
Statistical analysis 
 
The primary endpoint of these experiments was 
an improvement in survival time compared to 
non-resuscitated controls with a goal to reach 3 
hr based on DARPA requirements.[25] VPA, PTX 
or vehicle data were compared to a previously 
obtained untreated severe hemorrhage (60%) 
control model treated identically to the present 
animals (n = 16) [25]. Historical controls were 
used to reduce animal use. We have previously 
demonstrated a median survival time of 56 min 
with an IQR of 27 – 94 min in this model, which 

was highly reproducible over a 21 month period. 
The study was designed for termination of a 
treatment arm for futility to demonstrate an 
improvement, if survival time compared to con-
trol (no treatment) did not improve. This interim 
analysis was scheduled at n=3 or 4 in a group 
with an intent to include n=8 per group. As 
there were so few survivors beyond the end of 
hemorrhage, the hemodynamic and metabolic 
data figure is presented as an appendix so as 
not to distract from the survival benefit focus of 
the study. 
 
All data are presented as mean ± SEM or me-
dian (95% CI). A within groups repeated meas-
ures analysis of variance was used to examine 
the difference between the control group and 
the VPA, PTX or vehicle resuscitation groups, 
including change over time and the interaction 
of time and group. The hemorrhage and the 
resuscitation/recovery periods were considered 
separately in the analysis. If the repeated 
ANOVA showed a significant difference between 
groups over time, a post hoc analysis was per-
formed to determine which time points were 
significantly different using an independent t-
test between the groups (or non-parametric 
equivalent, as necessary). A Kaplan-Meier esti-
mate of survival was constructed to compare 
the Control vs. each other group (VPA, PTX or. 
the saline vehicle groups) via the stratified log 
rank test. A p ≤ 0.05 was considered statisti-
cally significant.  
 
Results 
 
Survival 
 
Swine weights, age, hemorrhage volume, resus-
citation volume and survival time after end of 
hemorrhage (EOH) for the 31 swine used in 
these comparisons are presented in Table 1. All 
31 animals were treated similarly from baseline 
through EOH, including the same hemorrhage 
volume. Median (95% CI) survival time from 
EOH for the VPA animals that received 400 mg/
kg or 300 mg/kg was 6 (4 – 8) min and 17.5 
(12 – 24.5) min, respectively. Animals treated 
with PTX had a median survival of 60.8 (21 – 
75) min after EOH, whereas the saline vehicle 
animals had a median survival of 92 (15 – 180) 
min after EOH, with one of the four animals sur-
viving to 180 min. For comparison, median sur-
vival time from EOH for the sixteen control 
swine (no resuscitation) was 55.7 (17.5 – 86) 
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min with a 6% (1/16) survival at the target time 
of 180 min. The median survival time for both 
VPA dosages was significantly shorter than con-
trol and vehicle (Table 1 and Figure 1). 
 
Systolic blood pressure (SBP), heart rate (HR), 
shock index (SI) and brain activity (BIS) data at 
baseline and EOH are presented in Figure 2 for 
control, VPA 400 mg/kg, VPA 300 mg/kg, PTX 
and vehicle. Although all 31 animals were 
treated similarly from baseline through EOH 
there were significant differences in SBP be-
tween some of the groups at baseline and EOH 
(possibly seasonal or brood variability). All ani-

mals demonstrated a character-
istic metabolic acidosis during 
and following hemorrhage with a 
significant decrease in HCO3 
(32.2 ± 0.4 to 21.8 ± 0.6 mmol/
l) and base excess (BE; 7.1 ± 0.3 
to -1.3 ± 0.5 mmol/l) and an 
increase in lactate (0.9 ± 0.07 
mmol/l to 7.8 ± 0.5 mmol/l) 
(Figure 2). Core temperature of 
all animals averaged 38.1 ºC at 
baseline (n = 31), 37.9 ºC at 
EOH (n = 31) and 37.5 ºC at 60 
min after EOH (n = 13). 
 
All four of the swine treated with 
400 mg/kg VPA died from car-
diac and respiratory arrest within 
4 min of start of treatment 
(treatment was delayed 2-3 min 
for blood sampling after EOH). 
The investigators of previous 
studies [2-7] were consulted and 
the treatment was decreased to 

300 mg/kg and the administration time was 
increased to 30 min. All three of the 300 mg/kg 
VPA animals died with respiratory and cardiac 
arrest before the end of the 30 min infusion.  
 
Discussion 
 
The primary aim of the present study was to 
demonstrate the ability of VPA or PTX in small 
volumes to extend survival time compared to no 
resuscitation as originally defined in the DARPA 
Surviving Blood Loss program. The current re-
suscitation study, using small volumes of either 
VPA (1.33 or 2.0 ml/kg) or PTX (2.0 ml/kg), with 

Table 1. Swine Weight, Age, Hemorrhage Volume, Resuscitation Volume and Survival Time 

  
Weight 
(kg) 

Age 
(months) 

Hem. Vol. 
(ml) 

Hem. Vol. 
(ml/kg) 

Resuscitation 
(ml/kg) 

Mean Survival 
(min) 

Survival at 
180 min 

Control (n = 16)* 40.4 ± 1.4 13.3 ± 0.5 1565± 54 38.8 ± 0.1 none 64 ± 11.5 1/16 (6%) 

VPA 400 mg/kg (n = 4) 42 ± 0.2 12 ± 0.6 1632 ± 9 38.9 ± 0.09 1.0 ± 0.2 6 ± 0.8# 
  

VPA 300 mg/kg (n = 3) 42.4 ± 2.6 12 ± 1 1653 ± 97 38.9 ± 0.06 1.0 ± 0.3 18 ± 3.6# 
  

PTX 50 mg/kg (n = 4) 40.4 ± 1.5 10.6 ± 0.9 1576 ± 58 39 ± 0 2 54 ± 12.4 
  

Saline Vehicle (n = 4) 39.8 ± 1.7 10.4 ± 0.7# 1547 ± 63 38.9 ± 0.16 2 95 ± 36.3# 1/4 (25%) 
Data are mean ± SEM. * = Control data from Burns et al.23  VPA = Valproic Acid; PTX = Pentoxifylline; # = significantly different than 
control (p<0.05).  Percent shed blood volume replacement with VPA at 400 mg/kg and 300 mg/kg (1.0 ml/kg; corrected for early 
death) = 2.6%, whereas shed blood replacement with PTX or saline at 2 ml/kg was 5.1% of shed blood. Mean survival time was 
measured from EOH. 
  

 

Figure 1. Kaplan-Meier survival plot of Control vs. Valproic Acid (VPA; 400 
mg/kg) vs. VPA (300 mg/kg) vs. Pentoxifylline (PTX) vs. Vehicle from EOH 
through 180 min after hemorrhage. Number in (  ) = number of survivors 
at 180 min for control and vehicle. 
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no additional resuscitation fluid showed dra-
matic negative results in the sedated, severely 
hemorrhaged mature male miniature swine. The 
response to VPA at both the 400 mg/kg and 

300 mg/kg in this study appeared to be toxic 
with respiratory and cardiac arrest occurring 
rapidly after infusion. In contrast, previous stud-
ies using VPA in anesthetized rats (300 mg/kg 

Figure 2. Hemodynamic and metabolic data. Data are mean ± SEM. Arrow indicates time of infusion of VPA, PTX or 
Vehicle. * = significantly different than control (p < 0.05). #,& = same symbol significant difference. 
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in 0.25 ml/kg normal saline) [2-4,6] and anes-
thetized swine (400 mg/kg in 30 ml normal sa-
line plus normal saline at 3 x shed blood vol-
ume)7 or PTX in unanesthetized rats (50 mg/kg 
in 2.0 ml normal saline) [15-17] and anesthe-
tized rats (49-50 mg/kg in 42-63 ml/kg LR) 
[10,11], demonstrated  improvements in nu-
merous measured functions with the admini-
stration of similar doses of VPA or PTX used in 
the current study following hemorrhage. The 
disparity between the negative results from this 
study and the beneficial results from previous 
studies using the same products and similar 
dosages are difficult to explain.  
 
This study, using the sedated, sexually mature 
male miniature swine was designed to closely 
simulate the mature conscious male battlefield 
casualty experiencing severe hemorrhage. Se-
dation in the present experiments was an ethi-
cal consideration. There are five significant dif-
ferences between this study and previous stud-
ies using VPA and PTX in rats and swine: 1) spe-
cies difference (rat vs. swine), 2) swine strain 
differences (Sinclair miniature swine vs. domes-
tic swine), 3) sedation vs. anesthesia, 4) sexu-
ally mature males compared to sexually imma-
ture swine and 5) no additional fluids vs. resus-
citation fluids (shed blood, hypertonic saline 
(HS), LR and normal saline). 
 
The miniature swine is becoming a model of 
choice for hemorrhage research because of its 
many similarities to man [29-31]. On the other 
hand, the rat, with its higher metabolic rate has 
a different response to hemorrhage and resusci-
tation than the swine [25]. Anesthesia masks 
many of the potentially negative responses to 
hemorrhage and resuscitation. For example, in 
the current study during the infusion of PTX fol-
lowing hemorrhage the relaxed, sedated ani-
mals became restless, as though uncomfortable 
(CNS adverse overdose reaction seen in hu-
mans), with body movements such as extension 
of the limbs. One animal had pronounced leg 
extension and arching of the back with the head 
raised (appeared to be a seizure) and a tran-
sient HR elevation to 237 b/min from a HR of 
157 b/min at the beginning of infusion. The 
animal’s BIS sedation level was 81 and MAP did 
not change. These dramatic symptoms would 
not have been observed if the animals were 
anesthetized. Probably the most significant fac-
tor between this study and most previous VPA 
and PTX studies was the lack of supplemental 

fluids during resuscitation in this study. 
 
VPA 
 
Several recent studies involving anesthetized 
rats hemorrhaged 60% of EBV followed by the 
administration of 300 mg/kg of VPA over 2 min 
[6], and anesthetized swine with femur fracture, 
60% hemorrhage and liver laceration followed 
by 400 mg/kg of VPA given over 30 min [7], 
demonstrated improvements in survival without 
fluid resuscitation in the rat study [6] or saline 
infusion but no shed blood transfusion in the 
swine study [7]. These two studies were similar, 
but not identical, to the current study. In the rat 
study [6], the animals received VPA (300 mg/kg) 
in 0.25 ml saline over a 2 min period after hem-
orrhage, plus the normal saline standard of care 
for 60 min and no other fluids. In the swine 
study [7], the VPA (400 mg/kg) was adminis-
tered in 30 ml of normal saline over a 30 min 
period after hemorrhage, and after the admini-
stration of normal saline at 3 times the shed 
blood volume. It is still questionable whether 
these differences would account for the dra-
matic results noted in the present experiments. 
 
VPA is a drug that has been accidentally or in-
tentionally overdosed many times [32,33]. The 
serum therapeutic range for VPA in humans is 
50-150 µg/ml [32] and the toxic and potentially 
fatal serum level is > 850 µg/ml [33]. During 
normal conditions VPA is 90% protein bound, 
however, at high levels of VPA (greater that 30-
50 µg/ml), protein binding is saturated and a 
large proportion of the VPA is free, exacerbating 
its effects. Normal half life is 7-15 hrs [34] but 
can be extended by overdose.  
 
Serum levels of VPA after a single dose of 400 
mg/kg in traumatized and hemorrhaged anes-
thetized swine were reported as 900 µg/ml, 
560 µg/ml and 400 µg/ml immediately, at 2 hr 
and at 5 hr after treatment, respectively [7]. 
Previous human  serum or plasma concentra-
tions of VPA in patients who died were 1970 
µg/ml [35], 1700 µg/ml [33], 1361 µg/ml [33], 
1914 µg/ml [34] and 2722 µg/ml [36]. The 
human deaths were not as immediate as the 
current swine study. However, the humans were 
not challenged with a 40% residual blood vol-
ume and they were being vigorously treated for 
the overdose. Measured plasma levels of VPA at 
15 min post treatment from two of the swine 
treated with 300 mg/kg VPA in this study were: 
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1010 µg/ml and 530 µg/ml, similar to a previ-
ous report [7] and less than those associated 
with lethal overdose. Some of the symptoms of 
severe VPA overdosing reported in humans are 
coma, respiratory depression or arrest, cardiac 
arrest and acidosis [32-34]; symptoms ob-
served in the present experiments. 
 
PTX 
 
PTX experiences rapid absorption, distribution, 
metabolism and excretion through the kidney. A 
single 400 mg oral dose resulted in a plasma 
concentration of 1.1µg/ml at 1.05 hr. There is 
no significant protein binding and the normal 
metabolic half-life is 0.89 hr.[8,9] The human 
therapeutic blood level of PTX is approximately 
0.3-1.3 µg/ml [8,9,37]. A blood level associated 
with lethality in a human was  32.5 µg/ml.[37] 
In the current study, measured plasma levels 
(µg/ml) from the four PTX treated swine was 
144 ± 17.4, 88 ± 10.4 and 56 ±1.0 at 15 min, 
30 min and 60 min after treatment, respec-
tively, which were higher than the level ob-
served in a patient who died. Plasma levels in 
other animal studies after iv infusion of PTX 
were not reported, so it remains unclear 
whether sensitivity of humans to PTX is greater 
than in animals.  
 
The use of 50 mg/kg PTX after resuscitation 
with lactated Ringer’s (LR) at four times shed 
blood volume in unanesthetized rats following 
trauma-hemorrhage demonstrated improved 
liver function [15], cardiac output and tissue 
perfusion [16] and cardiac performance [17]. 
Other studies showed beneficial effects in anes-
thetized rats after hemorrhage [10,11,18-23]. 
Anesthetized dogs that were hemorrhaged to a 
MAP of 40 mm Hg for 30 min showed improved 
cardiac performance and oxygen utilization after 
pulmonary artery infusion of 15 mg/kg PTX with 
LR at two times shed blood volume plus 100 ml 
of LR over 45 min [12], or improvement in sys-
temic and regional perfusion after 15 mg/kg 
PTX in 4 ml/kg HS [13]. Thus, resuscitation with 
VPA or PTX may require additional fluids such as 
LR, HS, normal saline or return of shed blood to 
eliminate the toxic effects observed here. 
 
The number of animals in this VPA and PTX 
study was abbreviated because of early fatali-
ties as pre-designated in the experimental de-
sign. Continuing with additional animals would 
not be statistically or ethically justified. Based 

on the current results, to detect a significant 
180 min survival difference (0.8 power) be-
tween control (n = 16) vs. VPA (400 mg/kg; n = 
4), VPA (300 mg/kg; n = 3) and PTX (n = 4) 
would require 122 animals in each group. 
 
Summary 
 
The use of VPA and PTX as small volume resus-
citation products in a sedated, severe hemor-
rhage swine model failed to demonstrate an 
improvement in survival time at the doses and 
delivery rate used in this study in the absence of 
addition fluid resuscitation. Previous studies 
suggest that VPA and PTX may be useful as ad-
juncts with HS, LR or colloids for hemorrhage 
resuscitation. Use of sedated animals is sug-
gested as this may elucidate adverse effects of 
these compounds masked by anesthesia.  
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